RNA-maailma
Yritettäessä selittää biologisen elämän syntymistä ohjaamattomasti ja tarkoituksettomasti itsestään tarvitaan jonkinlainen selitys myös abiogeneesille eli sille, mitä olisi tapahtunut ennen kuin evoluutioteorian vaatimaa perinnöllistä muuntelua oli olemassakaan. Koska yksinkertaisinkin elävä solu on suunnattoman monimutkainen, erilaiset abiogeneettiset hypoteesit pyrkivät silloittamaan elottoman kemian ja toimivan solun välistä kuilua jonkinlaisten sittemmin kadonneiden mutta periaatteessa mahdollisten välimuotojen avulla.
RNA-maailma on yksi tällainen abiogeneettinen hypoteesi; sen mukaan ensimmäinen alkukopioituja olisi ollut RNA-molekyyli tai ainakin RNA:n kaltainen molekyyli. Suhteellisen yksinkertaisuutensa vuoksi RNA-molekyyli onkin ns. tieteellisen maailmankatsomuksen puitteissa mielekkäämpi ehdokas ensimmäiseksi kopioitujaksi kuin esimerkiksi kokonainen alkusolu. RNA on myös mielekkäämpi ehdokas kuin proteiineista, DNA:sta ja RNA:sta tai edes pelkästään proteiinista ja RNA:sta muodostuva molekyylijoukko, joka tarvitsisi monesta osasta koostuessaan jonkin mekanismin pitämään kaikki osat lähellä ja saatavilla.
RNA-molekyyli on siis yksinkertaisin alkukopioituja, jota on pystytty ehdottamaan. Olisiko tällainenkaan alkukopioituja sitten järkevästi ajatellen voinut syntyä ohjaamattomasti sattumalta?
Yksinkertainen alkukopioituja?
Solujen kopioituminen tapahtuu pääpiirteissään seuraavasti:
- Proteiinit kopioivat DNA:ssa olevan (proteiinien valmistukseen käytettävän) informaation RNA-molekyyliin.
- Proteiinit tuottavat RNA-molekyylin ohjeen mukaisia uusia proteiineja.
- Tuotetut proteiinit rakentavat kaikki tarvittavat solun rakennusaineet saatavilla olevista raaka-aineista.
- Tuotetut proteiinit kasaavat kaikki tarvittavat solun rakenteet tuotetuista ja saatavista rakennusaineista.
- Tuotetut proteiinit kopioivat myös DNA-molekyylin, jonka ohjeen mukaan nämäkin proteiinit on tuotettu.
Huomataan, että nykyisen elämän mahdollistamiseksi tarvitaan DNA:ta, jotta voidaan saada proteiineja. Toisaalta tarvitaan myös proteiineja, jotta voidaan saada DNA:ta. Tietyissä tapauksissa kopioiminen voidaan kuitenkin suorittaa pelkän RNA-molekyylin ja proteiinien varassa. Tällöin kuitenkin tiedon säilyminen heikkenee ja kopioitumisen tehokkuus laskee. Toisaalta tällaisessa järjestelmässä on vähemmän osia, ja tämä suhteessa yksinkertaisempi rakenne helpottaa ainakin jossain määrin sen satunnaissyntyä nykyisenlaisen DNA:ta hyödyntävän solun syntymahdollisuuksiin verrattuna. RNA:n hoitaessa sekä DNA:n että RNA:n tehtävät proteiineja tarvitaan edelleen RNA-molekyyliin tallennetun informaation toteuttamiseen.
RNA:lla on havaittu olevan samoja ominaisuuksia kuin eräillä proteiineilla. Sopivanlaiset RNA-molekyylit, ribotsyymit, kykenevät proteiinientsyymien tavoin katalysoimaan joitakin kemiallisia reaktioita. Tämän havainnon pohjalta on käyty kehittämään ideaa RNA-kopioitujasta, joka kykenisi informaation varastoimisen lisäksi hoitamaan itse myös informaation kopioimisen. Tällöin RNA-molekyyli toimisi samalla sekä "geeninä", "viestinä" että "entsyyminä". Itseään kopioiva RNA-molekyylikompleksi onkin onnistuttu älyllisesti suunnittelemaan, ja sitä on pystytty testaamaan laboratoriossa.1
RNA:n rakenne
Tunnetuissa elämänmuodoissa RNA (ribonukleiinihappo, engl. ribonucleic acid) on pitkä, pienemmistä molekyyleistä rakentuva ketjumolekyyli. Sen runko muodostuu riboosi-sokereista ja fosfaateista, joita on ketjussa vuorotellen. Jokaiseen riboosiin on kiinnittynyt yksi neljästä erilaisesta typpiemäksestä. RNA:ssa nämä emäkset ovat adeniini, guaniini, sytosiini ja urasiili. Tästä riboosin, fosfaatin ja typpiemäksen muodostamasta RNA-ketjun perusyksiköstä käytetään nimitystä "nukleotidi". Nukleotidien järjestys ketjussa – viime kädessä siis emäsjärjestys – määrittää RNA-molekyylin toiminnalliset ominaisuudet.
Riboosi
Riboosi on sokerimolekyyli, joka fosfaattimolekyylin kanssa vuorotellen muodostaa RNA-ketjun rungon. Riboosia voidaan syntetisoida formaldehydistä formoosireaktiossa. Riboosia on siis mahdollista valmistaa, mutta sopivanlainen formoosireaktio edellyttää riittävän suuria pitoisuuksia juuri oikeita lähtöaineita, koska yhden riboosimolekyylin syntymiseen tarvitaan useita formaldehydimolekyylejä. Alkuliemen täytyisi siis olla selittämättömän formaldehydipitoinen, jotta nämä molekyylit voisivat mielekkäällä todennäköisyydellä reagoida juuri keskenään. Parhaissa laboratorio-olosuhteissakin riboosia syntyy kuitenkin vain n. 7 %.
Riboosi voi esiintyä useissa eri muodoissa, ja sattumakemia tuottaa näitä kaikkia. RNA-kopioitujan kannalta avaruusrakenne on kriittisen tärkeä, joten isomeriaerotkin voivat olla ratkaisevia. Nykyisessä elämässä RNA:n rakenneosana toimii D-riboosi (oikeakätinen muoto). Tällaisten optisesti puhtaiden pitkien ketjujen muodostuminen on erittäin epätodennäköistä, ja siksi onkin ehdotettu, että alku-RNA olisi voinut hyödyntää myös muita isomeerejä. Täysin mielivaltaisesti näitä erilaisia isomeerejä ei kuitenkaan voida käyttää, koska vääränmuotoiset osat aiheuttavat molekyylin avaruusrakenteessa vääränlaista mutkittelua.
Typpiemäkset
Adeniinin tuotanto syaanivedystä (HCN) on optimiolosuhteissakin vain 1 %:n luokkaa. Sitä paitsi HCN reagoi riboosin tuottamiseksi tarvittavan formaldehydin kanssa, joten näiden esiintyminen samassa liemessä vähentäisi sekä riboosin että typpiemästen tuottoa. Vaihtoehtoisesti riboosin täytyisi syntyä yhdessä liemessä ja typpiemästen toisessa, minkä jälkeen nämä seokset sekoittuisivat sopivalla tavalla. Tällainen tapahtuma olisi alkumaapallollakin ymmärrettävästi harvinainen.
Emäs | Adeniini |
Guaniini |
Sytosiini |
Urasiili |
Nukleotidi | Adenosiinimonofosfaatti A |
Guanosiinimonofosfaatti G |
Sytidiinimonofosfaatti C |
Uridiinimonofosfaatti U |
Sytosiinille ja urasiilille ei tunneta mitään abioottista syntymekanismia, joten alku-RNA:n olisi ilmeisesti täytynyt käyttää joitakin muita typpiemäksiä näiden tilalla.2 Sopivien raaka-aineiden ja niiden syntytodennäköisyyksien tuntemattomuus heikentää tietenkin RNA-maailma-hypoteesin uskottavuutta. Guaniinille tunnetaan syntymekanismi, mutta sen syntyminen on adeniiniakin huomattavasti epätodennäköisempää. Se vaatii myös niin korkean HCN-pitoisuuden, ettei riboosia voida synnyttää samassa liemessä, koska sen vaatima formaldehydi reagoisi syaanivedyn kanssa ja estäisi guaniinin synteesin. Guaniinin synteesi olisi optimioloissakin alle 0,1 %.
Fosfaatti
Fosfaatti sitoutuu helposti metalli-ioneihin ja painuu pohjaan. Tämä vähentää käytettävissä olevan fosfaatin määrää.
Ketjuuntuminen
Fosfaattiin ja typpiemäkseen kiinnittyminen voi tapahtua mielivaltaisesti missä tahansa riboosin neljässä hydroksyyliryhmässä (ks. riboosimolekyylin neljä punavalkoista uloketta). Samoin adeniini voi kiinnittyä mielivaltaisesti kolmessa eri kohdassa. Toisin sanoen sekä riboosin että adeniinin rakenteessa on useita kohtia, joihin muut molekyylit voivat kiinnittyä aivan yhtä helposti. Vääränlainen kiinnittyminen puolestaan vaikuttaa merkittävästi saatavan molekyylin avaruusrakenteeseen.
Molekyyleillä ei ole myöskään mitään luontaista taipumusta muodostaa pitkiä ketjuja. Kemian tunnetut lainalaisuudet johtavat reaktioita pikemminkin päinvastaiseen suuntaan, koska syntyneet ketjut pyrkivät hajoamaan, jos saatavilla on vettä. Jos kuitenkin hyvällä tuurilla riittävän pitkä RNA:n kaltainen molekyyli sattuisi syntymään, sen pitäisi vielä olla emäsjärjestykseltään ja avaruusrakenteeltaan erittäin täsmällinen. RNA:n tavallisiin ominaisuuksiin ei kuulu itsensä kopioiminen, vaan itseään kopioivat RNA-molekyylit ovat poikkeuksellisen harvinaisia.
Alkuilmakehä
Geologinen todistusaineisto viittaa voimakkaasti siihen, että alkumaapallon ilmakehä on ollut hapettava, jolloin formoosireaktion raaka-aineena toimiva formaldehydi hajoaisi hyvin helposti. Jos ilmakehässä oli hiilidioksidia, se olisi liuennut veteen muodostaen hiilihappoa, joka tuhoaa hyvin tehokkaasti jo syntyneet riboosimolekyylit. Syaanivety ja formaldehydi reagoivat keskenään, jolloin nukleotidien ja sokereiden synteesit eivät onnistu yhtä aikaa.
Sattumanvaraisen muodostumisen todennäköisyys
Jotta RNA-maailma-hypoteesin uskottavuutta voidaan arvioida realistisesti, on syytä yrittää laskea yläraja sopivan alkukopioitujan, eli tässä tapauksessa oman kopioitumisensa katalysoimiseen kykenevän RNA-molekyylin, sattumanvaraisen synnyn todennäköisyydelle. Pyritään siis arvioimaan oletetun alkukopioitujan spontaanin synnyn todennäköisyyttä käyttäen arvioiden lähtökohtana "yksinkertainen alku-RNA-hypoteesia". Tehdään saman tien muutama lieventävä alkuoletus, joita voidaan varmaankin pitää vähintäänkin reiluina:
n | p(RNA) |
---|---|
1 | 4,7 * 10-4 |
5 | 2,2 * 10-17 |
10 | 4,9 * 10-34 |
15 | 1,1 * 10-50 |
20 | 2,4 * 10-67 |
25 | 5,3 * 10-84 |
30 | 1,2 * 10-100 |
35 | 2,6 * 10-117 |
40 | 5,8 * 10-134 |
45 | 1,3 * 10-150 |
50 | 2,8 * 10-167 |
75 | 1,5 * 10-250 |
90 | 1,6 * 10-300 |
- Ensinnäkin riboosi ja typpiemäkset syntyvät toisistaan erillisissä liemissä, jolloin syaanivety ja formaldehydi eivät häiritse toisiaan.
- Erillisten lienten yhdistymiseen liittyviä todennäköisyyksiä ei jatkossa kuitenkaan oteta huomioon vaan laskut suoritetaan kaikesta huolimatta niin kuin reaktiot tapahtuisivat samassa liemessä.
- Tehdään myös täysin epärealistinen oletus, jonka mukaan liemien olosuhteetkin ovat yhtä edulliset kuin optimaalisissa laboratorio-oloissa.
- Sopivan riboosimolekyylin syntyminen tapahtuu siis todennäköisyydellä p(R) = 0,07.
- Sopivan adeniinimolekyylin syntyminen tapahtuu todennäköisyydellä p(A) = 0,01.
- Riboosilla kiinnittyminen voi tapahtua neljässä kohdassa, mutta oletetaan, että keskimäärin joka toisessa kohdassa tapahtuva kiinnittyminen typpiemäkseen tuottaa oikean avaruusrakenteen.
- Tällöin yhden oikeanlaisen riboosin liittyminen typpiemäkseen oikealla hydroksyyliryhmällä tapahtuu todennäköisyydellä p(R)/2 = 0,07 * 0,5 = 0,035.
- Oletetaan myös että alku-RNA käyttää nyky-RNA:n tavoin neljän emäksen pariutumisjärjestelmää.3
- Oletetaan että alku-RNA olisi käyttänyt jotakin helpommin saatavaa typpiemästä sytosiinin ja urasiilin lisäksi myös guaniinin paikalla.
- Koska potentiaalisten typpiemästen syntymisen todennäköisyyttä ei tunneta, oletetaan, että kaikki neljä tarvittavaa typpiemästä syntyvät yhtä todennäköisesti kuin adeniini: p(X) = 4 * p(A) = 4 * 0,01 = 0,04.
- Oletetaan myös, että keskimäärin joka toinen näistä emäksistä sopisi kullekin paikalle RNA-ketjuun, jotta ketju voisi olla oikealla tavalla toiminnallinen kopioidakseen itseään.
- Lisäksi oletetaan, että adeniini voisi toimivan rakenteen saavuttamiseksi liittyä riboosiin kahdella kolmesta kiinnittymiskohdastaan.
- Oletetaan sama todennäköisyys adeniinin lisäksi myös muille typpiemäksille: 2p(X)/3 ≈ 0,67 * 0,04 ≈ 0,02667.
- Oletetaan vielä fosfaattien aina tarvittaessa sopivasti syntyvän, ilmaantuvan paikalle ja liittyvän riboosimolekyyleihin asianmukaisesti, niin että RNA-runko syntyy siltä osin varmasti. (Ts. näihin tapahtumiin liittyvät epätodennäköisyydet jätetään laskuissa huomioon ottamatta.)
- Tällöin yhden sopivanlaisen nukleotidin muodostuminen tapahtuisi samalla todennäköisyydellä kuin yhden typpiemäksen ja yhden riboosimolekyyliin kiinnittyminen toisiinsa oikealla tavalla: p(Nukl) = 2p(X)/3 * p(R)/2 ≈ 0,02667 * 0,035 ≈ 9,33 * 10-4
- Kopioitumiseen tarvittavan informaation kannalta yhden oikeanlaisen nukleotidin saamiseksi oikeaan kohtaan ketjussa (ks. Oletus 7.) voidaan nyt laskea todennäköisyys: p(Inf) = p(Nukl)/2 = [2p(X)/3 * p(R)/2]/2 ≈ 9,33 * 10-4 * 0,5 ≈ 4,7 * 10-4
- Ketjun syntymisen todennäköisyys pienenee ketjun pituuden mukaan: p(RNA) = [p(Inf)]n, jossa n on ketjun pituus nukleotideinä ja p(RNA) on kyseisen ketjun todennäköisyys. Eripituisten ketjujen sattumanvaraisen syntymisen todennäköisyyksiä on esitetty oikealla olevassa taulukossa.
Pienin tunnettu RNA:n ketjuuntumista katalysoiva ribotsyymi on ollut 165 nukleotidia pitkä. Näinkin "lyhyellä" ribotsyymillä kopioimisen tarkkuus on merkittävästi huonompi kuin suuremmilla kopioitujilla. Eräs 189 nukleotidia pitkä ribotsyymi on jo niin tarkka, että kykenee kopioimaan RNA:ta 98,9 %:n tarkkuudella; se siis tuottaa identtisen kopion joka kahdeksas kerta.4 Ei ole tieteellistä näyttöä siitä, että mikään alle 150 nukleotidia pitkä RNA-molekyyli kykenisi katalysoimaan omaa kopioitumistaan.
Suhteuttaaksemme lukuja johonkin otamme niille vertailukohdan: Koko maailmankaikkeudessa on noin 1065 atomia. Lisäksi koko universumissa on voinut tapahtua korkeintaan 10150 fysikaalista tapahtumaa. Eli vaikka joka ikinen maailmanhistorian fysikaalinen tapahtuma olisi esitetyn kaltaisissa epärealistisen edullisissa olosuhteissa tapahtuva alkuliemen kemiallinen reaktio, ei olisi silti odotettavissa, että liemessä syntyisi edes yhtä sopivaa yli 45 nukleotidin RNA-molekyyliä.
Katso myös
ApologetiikkaWiki
Internet
- Prof. John Waltonin esitelmä aiheesta on katsottavissa ja ladattavissa osoitteessa http://edinburghcreationgroup.org/originoflife.xml.
Viitteet
- ^ Lincoln, T. A. & Joyce, G. F., Science, 2009, DOI: 10.1126/science.1167856
- ^ Orgel, L.: The Origin of Life on Earth. Scientific American, 1994, nro 4, s. 81.
- ^ Myös kahden emäksen pariutumisjärjestelmä olisi mahdollinen, mutta tällaisen molekyylin mahdollisesta entsyymiaktiivisuudesta ei ole mitään näyttöä. Useammankin emäksen järjestelmä voisi toimia, mutta tällöin molekyylistä tulee vielä huomattavasti epätodennäköisempi.
- ^ Johnston, W. K. & Unrau, P. J. & Lawrence, M. S. & Glasner, M. E. & Bartel, D. P.: "RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension". Science 292, 1319 (2001)