Ero sivun ”Kolikkoesimerkki” versioiden välillä

ApoWikistä
p (sisäisen linkin korjaus)
(+lukusuosituksiin)
 
(13 välissä olevaa versiota 4 käyttäjän tekeminä ei näytetä)
Rivi 1: Rivi 1:
Kolikkoesimerkki on perinteinen [[wp:analogia|analogia]], jolla pyritään vetämään matto suunnittelua puolustavien argumenttien alta, jotka vetoavat äärimmäiseen epätodennäköisyyteen. Hollolan lukion rehtori Kimmo Laitinen [http://hollolanlukio.blogspot.com/2009/12/sattuma-vai-tarkoitus.html tiivistää] blogissaan kolikkoesimerkin seuraavasti.
'''Kolikkoesimerkki''' on perinteinen [[wp:analogia|analogia]], jolla pyritään vetämään matto suunnittelua puolustavien argumenttien alta, jotka vetoavat äärimmäiseen epätodennäköisyyteen. Hollolan lukion rehtori Kimmo Laitinen [http://hollolanlukio.blogspot.com/2009/12/sattuma-vai-tarkoitus.html tiivistää] blogissaan kolikkoesimerkin seuraavasti.
{{quotation|Tuo sattuman todennäköisyys on aika helppo demonstroida. Ota kolikko ja heitä sitä sata kertaa. Merkitse kruunut ja klaavat joka heitolla. Saat jonon, jonka todennäköisyys on noin 1:1 267 650 600 000 000 000 000 000 000 000 (31 numeroa). Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme. Lähes mahdoton tapahtuma ja kuitenkin olit sen todistajana heittäessäsi kolikkoa parin minuutin ajan.}}
{{Sitaatti|Tuo sattuman todennäköisyys on aika helppo demonstroida. Ota kolikko ja heitä sitä sata kertaa. Merkitse kruunut ja klaavat joka heitolla. Saat jonon, jonka todennäköisyys on noin 1:1 267 650 600 000 000 000 000 000 000 000 (31 numeroa). Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme. Lähes mahdoton tapahtuma ja kuitenkin olit sen todistajana heittäessäsi kolikkoa parin minuutin ajan.|Kimmo Laitinen<ref>http://hollolanlukio.blogspot.com/2009/12/sattuma-vai-tarkoitus.html</ref>}}
Laitinen todistaa yllä sen, että mikä tahansa pitkä havaitsemamme tapahtumasarja on erittäin epätodennäköinen. Tämän esimerkin perusteella mikään epätodennäköinen asia ei ole ihme, koska voimme havaita sen. Esimerkki saa ajattelemaan, että eiväthän nämä todennäköisyydet todista mitään, joten Jumalan olemassaoloa puolustavat todennäköisyyslaskelmat ovat yhtä tyhjän kanssa.
Laitinen todistaa yllä sen, että mikä tahansa pitkä havaitsemamme tapahtumasarja on erittäin epätodennäköinen. Tämän esimerkin perusteella mikään epätodennäköinen asia ei ole ihme, koska voimme havaita sen. Esimerkki saa ajattelemaan, että eiväthän nämä todennäköisyydet todista mitään, joten Jumalan olemassaoloa puolustavat todennäköisyyslaskelmat ovat yhtä tyhjän kanssa.


Todellisuudessa todennäköisyyksiin perustuva päättely on oikeastaan koko tieteen perusta <ref>E.T. Jaynes, [http://www.amazon.com/Probability-Theory-Logic-Science-Vol/dp/0521592712 Probability Theory, The Logic of Science], 2003, Cambridge University Press</ref>. Mikäli pienet todennäköisyydet hyväksyttäisiin pyrkimättä selityksiin, jotka selittävät havainnot todennäköisemmin, kaikki tieteenteko loppuisi. (Jokainen teoria selittää minkä tahansa havainnon, viimeistään kvanttitunneloitumiseen vedoten, mutta tuolloin joudutaan vetoamaan tähtitieteellisen pieniin todennäköisyyksiin.)
== Kritiikkiä ==


W. Dembskin esittämässä [[suunnitteluteoria]ssa, täsmennyksen kriteeri ratkaisee juuri yo. asian. Dembskin teoriassa suunnittelun päättelyyn ei siis riitä pelkästään se, että tarkasteltava asia on epätodennäköinen, vaan asia on voitava täsmentää riippumattomasti itse tuloksesta. Esimerkiksi, mikä tahansa kolikon heittotulos on epätodennäköinen, mutta jos kaikki heitot ovat klaavoja, voimme sulkea sattuman pois ja päätellä suunnittelun/huijauksen. [[Bayesin_teoreema|Bayeslaisen tilastollisen paradigman]] alla asia nähdään niin, että suunnittelija tekee sattumaa todennäköisemmin täsmennettyjä asioita, joten tulos jossa kaikki heitot ovat klaavoja on todennäköisempi suunnittelun alla kuin sattuman. Tästä seuraa, että suunnittelu on todennäköisempi selitys.
=== Todennäköisyyslaskennan väheksyminen ===


Myös naturalistit myöntävät, että on erittäin epätodennäköistä, että olemme täällä havainnoimassa maailmaa.<ref>Laitinen: "Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme." Lisätietoa artikkelissa [[Maailmankaikkeuden hienosäätö]].</ref> Kolikkoesimerkki saa ihmisen yleistämään pienien todennäköisyyksien vähäpätöisyyden kaikkeen. Kolikkoesimerkin analogia on kuitenkin virheellinen. Kolikkoesimerkissä olemme havaitsemassa tapahtumasarjaa joka tapauksessa. Kuitenkin se, että olemme havainnoimassa maailmaa, ei ole itsestäänselvyys. Jos maailmankaikkeus ei olisi [[maailmankaikkeuden hienosäätö|hienosäädetty]], emme olisi havaitsemassa tätä epätodennäköistä tapahtumasarjaa. Tästä syystä sitä, että havainnoimme nyt maailmaa, voidaan verrata paremminkin [[wp:venäläinen ruletti|venäläiseen rulettiin]] kuin kolikon heittoon.
Kolikkoesimerkissä luodaan ihmiselle mielikuva, jonka mukaan todennäköisyyksillä ei ole mitään merkitystä. Todellisuudessa todennäköisyyksiin perustuva päättely on oikeastaan koko [[AW:S#tiede|tieteen]] perusta.<ref>E.T. Jaynes, [http://www.amazon.com/Probability-Theory-Logic-Science-Vol/dp/0521592712 Probability Theory, The Logic of Science], 2003, Cambridge University Press</ref> Mikäli pienet todennäköisyydet hyväksyttäisiin pyrkimättä selityksiin, jotka selittävät havainnot todennäköisemmin, kaikki tieteenteko loppuisi &ndash; jokainen teoria selittää minkä tahansa havainnon, viimeistään kvanttitunneloitumiseen vedoten, mutta tuolloin joudutaan vetoamaan tähtitieteellisen pieniin todennäköisyyksiin.


Jos joku heittää 100 kertaa kolikkoa, todennäköisyys saadulle sarjalle on hyvin pieni. Emme kuitenkaan pitäisi tätä ihmeenä. Jos taas venäläistä rulettia pelattaisiin siten, että sylinteri ladattaisiin puolilleen jokaisen laukauksen jälkeen, ja ammuttaisiin jotakuta päähän sata kertaa, selviämisen todennäköisyys on yhtä suuri kuin heitettäessä kolikkoa 100 kertaa. Kuitenkin venäläisen ruletin pelaaja luultavasti pitäisi selviämistään ihmeenä. Tämä perustuu siihen, että kolikkoa heitettäessä heittäjä havaitsee saadun sarjan riippumatta sarjasta. Venäläisessä ruletissa ruletin ei ole havaitsemassa sarjaa, jos sarja ei ole oikeanlainen.
[[W. Dembski]]n esittämässä [[suunnitteluteoria]]ssa, täsmennyksen kriteeri ratkaisee yllä olevan asian. Dembskin teoriassa suunnittelun päättelyyn ei siis riitä pelkästään se, että tarkasteltava asia on epätodennäköinen, vaan asia on voitava täsmentää riippumattomasti itse tuloksesta. Esimerkiksi, mikä tahansa kolikon heittotulos on epätodennäköinen, mutta jos kaikki heitot ovat klaavoja, voimme sulkea sattuman pois ja päätellä suunnittelun/huijauksen. [[Bayesin_teoreema|Bayeslaisen tilastollisen paradigman]] alla asia nähdään niin, että suunnittelija tekee sattumaa todennäköisemmin täsmennettyjä asioita, joten tulos jossa kaikki heitot ovat klaavoja on todennäköisempi suunnittelun alla kuin sattuman. Tästä seuraa, että suunnittelu on todennäköisempi selitys. [[Kuva:SW-629.jpg|thumb|200px|Venäläisessä ruletissa, toisin kuin kolikonheitossa, sadasta toistokokeesta selviytymistä voi hyvällä syyllä kutsua ihmeeksi.]]


Kolikkoesimerkki on siis [[wp:virheellinen analogia|virheellinen analogia]]. Jos maailmankaikkeutemme ei olisi jotakuinkin sellainen kuin se on, emme olisi havaitsemassa maailmankaikkeutta. Tästä syystä sitä, että havaitsemme maailmankaikkeutta, tulisi mieluummin verrata venäläiseen rulettiin kuin kolikon heittelyyn.
=== Analogian virheellisyys ===
 
Myös naturalistit myöntävät, että on erittäin epätodennäköistä, että olemme täällä havainnoimassa maailmaa.<ref>Laitinen: "Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme." Lisätietoa artikkelissa [[Maailmankaikkeuden hienosäätö]].</ref> Kolikkoesimerkki saa ihmisen yleistämään pienien todennäköisyyksien vähäpätöisyyden kaikkeen. Kolikkoesimerkin analogia on kuitenkin virheellinen. Kolikkoesimerkissä olemme havaitsemassa tapahtumasarjaa joka tapauksessa, sillä kolikon heitot voidaan havaita minkä tahansa sarjan jälkeen. Kuitenkin se, että olemme havainnoimassa maailmaa, ei ole itsestäänselvyys. Jos maailmankaikkeus ei olisi [[maailmankaikkeuden hienosäätö|hienosäädetty]], emme olisi havaitsemassa tätä epätodennäköistä tapahtumasarjaa. Tästä syystä sitä, että havainnoimme nyt maailmaa, voidaan verrata paremminkin [[wp:venäläinen ruletti|venäläiseen rulettiin]] kuin kolikon heittoon.
 
Jos joku heittää 100 kertaa kolikkoa, todennäköisyys saadulle sarjalle on hyvin pieni. Emme kuitenkaan pitäisi tätä ihmeenä. Jos taas venäläistä rulettia pelattaisiin siten, että sylinteri ladattaisiin puolilleen jokaisen laukauksen jälkeen, ja ammuttaisiin jotakuta päähän sata kertaa, selviämisen todennäköisyys on yhtä suuri kuin heitettäessä kolikkoa 100 kertaa. Kuitenkin venäläisen ruletin pelaaja luultavasti pitäisi selviämistään ihmeenä. Tämä perustuu siihen, että kolikkoa heitettäessä heittäjä havaitsee saadun sarjan riippumatta sarjasta. Venäläisessä ruletissa pelaaja ei ole havaitsemassa sarjaa, jos sarja ei ole oikeanlainen.
 
== Yhteenveto ==
 
Kolikkoesimerkki on [[wp:virheellinen analogia|virheellinen analogia]]. Jos maailmankaikkeutemme ei olisi jotakuinkin sellainen kuin se on, emme olisi havaitsemassa maailmankaikkeutta. Tästä syystä sitä, että havaitsemme maailmankaikkeutta, tulisi mieluummin verrata venäläiseen rulettiin kuin kolikon heittelyyn.
 
Lisäksi kolikkoesimerkki perustuu oletukselle siitä, että todennäköisyydet ovat merkityksettömiä, ja tämä oletus tekisi tieteestä täysin turhaa.


== Viitteet ==
== Viitteet ==
{{viitteet}}
{{viitteet|sarakkeet}}
 
[[Luokka:Suunnitteluteoria]][[Luokka:Lukusuositukset]]

Nykyinen versio 25. toukokuuta 2017 kello 17.44

Kolikkoesimerkki on perinteinen analogia, jolla pyritään vetämään matto suunnittelua puolustavien argumenttien alta, jotka vetoavat äärimmäiseen epätodennäköisyyteen. Hollolan lukion rehtori Kimmo Laitinen tiivistää blogissaan kolikkoesimerkin seuraavasti.

Tuo sattuman todennäköisyys on aika helppo demonstroida. Ota kolikko ja heitä sitä sata kertaa. Merkitse kruunut ja klaavat joka heitolla. Saat jonon, jonka todennäköisyys on noin 1:1 267 650 600 000 000 000 000 000 000 000 (31 numeroa). Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme. Lähes mahdoton tapahtuma ja kuitenkin olit sen todistajana heittäessäsi kolikkoa parin minuutin ajan.

Kimmo Laitinen1

Laitinen todistaa yllä sen, että mikä tahansa pitkä havaitsemamme tapahtumasarja on erittäin epätodennäköinen. Tämän esimerkin perusteella mikään epätodennäköinen asia ei ole ihme, koska voimme havaita sen. Esimerkki saa ajattelemaan, että eiväthän nämä todennäköisyydet todista mitään, joten Jumalan olemassaoloa puolustavat todennäköisyyslaskelmat ovat yhtä tyhjän kanssa.

Kritiikkiä[muokkaa]

Todennäköisyyslaskennan väheksyminen[muokkaa]

Kolikkoesimerkissä luodaan ihmiselle mielikuva, jonka mukaan todennäköisyyksillä ei ole mitään merkitystä. Todellisuudessa todennäköisyyksiin perustuva päättely on oikeastaan koko tieteen perusta.2 Mikäli pienet todennäköisyydet hyväksyttäisiin pyrkimättä selityksiin, jotka selittävät havainnot todennäköisemmin, kaikki tieteenteko loppuisi – jokainen teoria selittää minkä tahansa havainnon, viimeistään kvanttitunneloitumiseen vedoten, mutta tuolloin joudutaan vetoamaan tähtitieteellisen pieniin todennäköisyyksiin.

W. Dembskin esittämässä suunnitteluteoriassa, täsmennyksen kriteeri ratkaisee yllä olevan asian. Dembskin teoriassa suunnittelun päättelyyn ei siis riitä pelkästään se, että tarkasteltava asia on epätodennäköinen, vaan asia on voitava täsmentää riippumattomasti itse tuloksesta. Esimerkiksi, mikä tahansa kolikon heittotulos on epätodennäköinen, mutta jos kaikki heitot ovat klaavoja, voimme sulkea sattuman pois ja päätellä suunnittelun/huijauksen. Bayeslaisen tilastollisen paradigman alla asia nähdään niin, että suunnittelija tekee sattumaa todennäköisemmin täsmennettyjä asioita, joten tulos jossa kaikki heitot ovat klaavoja on todennäköisempi suunnittelun alla kuin sattuman. Tästä seuraa, että suunnittelu on todennäköisempi selitys.

Venäläisessä ruletissa, toisin kuin kolikonheitossa, sadasta toistokokeesta selviytymistä voi hyvällä syyllä kutsua ihmeeksi.

Analogian virheellisyys[muokkaa]

Myös naturalistit myöntävät, että on erittäin epätodennäköistä, että olemme täällä havainnoimassa maailmaa.3 Kolikkoesimerkki saa ihmisen yleistämään pienien todennäköisyyksien vähäpätöisyyden kaikkeen. Kolikkoesimerkin analogia on kuitenkin virheellinen. Kolikkoesimerkissä olemme havaitsemassa tapahtumasarjaa joka tapauksessa, sillä kolikon heitot voidaan havaita minkä tahansa sarjan jälkeen. Kuitenkin se, että olemme havainnoimassa maailmaa, ei ole itsestäänselvyys. Jos maailmankaikkeus ei olisi hienosäädetty, emme olisi havaitsemassa tätä epätodennäköistä tapahtumasarjaa. Tästä syystä sitä, että havainnoimme nyt maailmaa, voidaan verrata paremminkin venäläiseen rulettiin kuin kolikon heittoon.

Jos joku heittää 100 kertaa kolikkoa, todennäköisyys saadulle sarjalle on hyvin pieni. Emme kuitenkaan pitäisi tätä ihmeenä. Jos taas venäläistä rulettia pelattaisiin siten, että sylinteri ladattaisiin puolilleen jokaisen laukauksen jälkeen, ja ammuttaisiin jotakuta päähän sata kertaa, selviämisen todennäköisyys on yhtä suuri kuin heitettäessä kolikkoa 100 kertaa. Kuitenkin venäläisen ruletin pelaaja luultavasti pitäisi selviämistään ihmeenä. Tämä perustuu siihen, että kolikkoa heitettäessä heittäjä havaitsee saadun sarjan riippumatta sarjasta. Venäläisessä ruletissa pelaaja ei ole havaitsemassa sarjaa, jos sarja ei ole oikeanlainen.

Yhteenveto[muokkaa]

Kolikkoesimerkki on virheellinen analogia. Jos maailmankaikkeutemme ei olisi jotakuinkin sellainen kuin se on, emme olisi havaitsemassa maailmankaikkeutta. Tästä syystä sitä, että havaitsemme maailmankaikkeutta, tulisi mieluummin verrata venäläiseen rulettiin kuin kolikon heittelyyn.

Lisäksi kolikkoesimerkki perustuu oletukselle siitä, että todennäköisyydet ovat merkityksettömiä, ja tämä oletus tekisi tieteestä täysin turhaa.

Viitteet[muokkaa]

  1. ^ http://hollolanlukio.blogspot.com/2009/12/sattuma-vai-tarkoitus.html
  2. ^ E.T. Jaynes, Probability Theory, The Logic of Science, 2003, Cambridge University Press
  3. ^ Laitinen: "Suuruusluokka pitää helposti sisällään sattumat, joilla nykymaailmankaikkeus on syntynyt ja sen vähäpätöisenä osana me ihmiset täällä elämme." Lisätietoa artikkelissa Maailmankaikkeuden hienosäätö.