Anonyymi
Et ole kirjautunut
Keskustelu
Muokkaukset
Luo tunnus
Kirjaudu sisään
ApoWiki
Haku
Muokataan osiota sivusta
Kosminen hienosäätö
ApoWikistä
Nimiavaruudet
Sivu
Keskustelu
Lisää
Lisää
Sivun toiminnot
Lue
Muokkaa
Historia
Varoitus:
Et ole kirjautunut sisään. IP-osoitteesi näkyy julkisesti kaikille, jos muokkaat. Jos
kirjaudut sisään
tai
luot tunnuksen
, muokkauksesi yhdistetään käyttäjänimeesi ja saat paremman käyttökokemuksen.
Mainosroskan tarkastus.
Älä
täytä tätä!
==Fysiikan perusvoimat== Fysiikassa on neljä perusvuorovaikutusta: painovoima, sähkömagneettinen voima, sekä heikko ja vahva ydinvoima. Näiden vuorovaikutusten vahvuudet ovat seuraavanlaiset kun painovoima normitetaan vahvuuteen yksi: [[Kuva:Sciences exactes.png|thumb|right|180px|Fysiikan perusvuorovaikutusten tulee olla juuri oikeassa suhteessa toisiinsa nähden, jotta mm. alkuaineet ovat vakaita.]] *Painovoima, vahvuus 1 *Heikko ydinvoima, vahvuus 10<sup>32</sup> *Sähkömagneettinen voima, vahvuus 10<sup>36</sup> *Vahva ydinvoima (värivoima), vahvuus 10<sup>38</sup> (Tilanne on oikeastaan hieman tätä monimutkaisempi koska vuorovaikutukset kohdistuvat eri asioihin ja vuorovaikutusten etäisyysriippuvuudet ovat erilaisia. Nämäkin yksityiskohdat ovat välttämättömiä elämän kannalta.) Vaikka vuorovaikutuksien vahvuuksien vaihteluväli on valtavan suuri, niiden keskinäisten vahvuuksien tulee olla nykyisten kaltaisia jotta elämä olisi mahdollista. Vahvuuksien suhteiden osuminen sopivaan kohtaan sattumalta on siis erittäin epätodennäköistä. ====Painovoima==== Sähkömagneettisen voiman vahvuuden suhde painovoiman vahvuuteen on 10<sup>36</sup> = 1 000 000 000 000 000 000 000 000 000 000 000 000. Jos painovoima olisi 3000 kertaa vahvempi, tähdet eivät olisi pitkäikäisiä. Jos vielä vahvempi, olisi vain miniuniversumeita, lyhytikäisiä tähtiä, metriluokan planeettoja ja vain pienet eliöt voisivat kestää painovoiman. Jos se olisi heikompi, tähdet eivät olisi tarpeeksi kuumia fuusion syttymiseen. 3000 kertainen muutos saattaa vaikuttaa suurelta, mutta vuorovaikutusten vahvuuksien vaihteluvälillä kyseinen muutos on erittäin pieni. Painovoiman vahvuus on siis hienosäädetty tarkkuudella 1:10<sup>36</sup>. Tämä vastaa sitä, että tunnetun universumin laajuista liukusäätöä saisi muuttaa vain pari senttiä nykyisestä asetuksesta. ====Sähkömagneettinen voima==== Sähkömagneettisen vuorovaikutuksen johdosta samanmerkkiset varaukset hylkivät toisiaan ja erimerkkiset vetävät toisiaan puoleensa. Näin esimerkiksi atomia kiertävät negatiiviset elektronit pysyvät positiivisen atomiytimen ympärillä ja alkuaineet ovat mahdollisia (Tähän tarvitaan myös erittäin hieno kvanttifysiikka, jonka seurauksena elektroneilla on vakaita tiloja ytimen ympärillä ja alkuaineilla on kullekin tyypilliset ominaisuudet.) Atomiytimen positiiviset protonit ovat lähellä toisiaan ja hylkivät siten toisiaan vahvasti. Atomeja koossa pitävä voima siis räjäyttäisi atomiytimen hajalle ilman protonien välistä liimaa, vahvaa ydinvoimaa, joka siis pitää atomin ydintä kasassa. (Vahva ydinvoima on jäännevoima protoneja ja neutroneja koossa pitävästä värivuorovaikutuksesta.) Vahvan ydinvoiman suhde sähkömagneettiseen voimaan on noin 137 ja tästä syystä erilaisia ytimiä ja siten alkuaineita on suurin piirtein tämä määrä. Jos suhde olisi 60, elämälle tärkeät alkuaineet eivät olisi vakaita. Hieman suurempi muutos eliminoisi kaikki alkuaineet paitsi vedyn. ====Vahva ydinvoima==== Jo 0,5 prosentin muutos vahvan ydinvoiman vahvuudessa lopettaisi hiilen ja hapen tuoton tähdissä. ====Heikko ydinvoima==== *Heikko vuorovaikutus on riittävän heikko. Jos se olisi vahvempi, sitä käyttävä protoni-protoni fuusio muuttaisi kaiken vedyn heliumiksi, jolloin ei olisi elämää eikä pitkäikäisiä tähtiä. *Toisaalta jos heikko vuorovaikutus olisi heikompi, neutroneita ja protoneita olisi saman verran ja olisi vain nopeasti palavia helium-tähtiä. ===Muita fysiikan suureita=== Elektronin massa. Elektroni on noin tuhat kertaa protonia kevyempi. Tämä mahdollistaa sen, että elektronipilvi kiertää paljon raskaampaa ja siten riittävästi paikallaan pysyvää ydintä, joka taas mahdollistaa kemialliset sidokset. Protonin ja neutronin massat. Neutroni on juuri sopivasti protonia raskaampi: *Jos neutroni olisi hieman (1/700 -osa) raskaampi, p + p → D reaktiota ei tapahtuisi. Universumissa olisi vain protoneita eikä tähtiä olisi. *Jos neutroni olisi hieman kevyempi, protoniylimäärää ei olisi, olisi lähinnä heliumia. Helium palaa liian nopeasti. (Neutronin massasta suurempi osa tulee värivuorovaikutuksen vahvuudesta (kentästä) ja pienempi osa u ja d kvarkkien massoista. Mikäli tilannetta tarkastellaan kvarkkien massojen avulla, vaaditaan tarkempaa hienosäätöä.) ===Useiden parametrien samanaikaiset muutokset=== Tarkemmassa tarkastelussa elämän asettamat rajoitukset koskevat usein kahta tai useampaa parametria. Tällöin elämän salliva parametrien alue voidaan esittää alana tai tilavuutena kyseisten parametrien avaruudessa. Vain erittäin pieni alue tässä parametri-avaruudessa mahdollistaa elämän (Ks. esimerkiksi Tegmarkin artikkelin<ref>M. Tegmark, Is ``the theory of everything'' merely the ultimate ensemble theory?, Annals of Physics, 270, 1-51 (1998), http://arxiv.org/abs/gr-qc/9704009</ref> kuvat 4, 5 ja 7) Koska elämän asettamien vaatimusten määrä on paljon suurempi (140 <ref>H. Ross, Why the Universe Is the Way It Is?, 2008, Compendium-liite</ref>) kuin fysikaalisten parametrien määrä (noin tusina), on yllättävää, että edes yksi elämän ehdot täyttävä alue löytyy. Havaitsemamme hienosäädetyn 'parametrisaaren' läheisyydessä voi olla joitain elämän sallivia parametrien yhdistelmiä, 'saaria', mutta niiden määrä on rajallinen<ref>M. Tegmark, Is ``the theory of everything'' merely the ultimate ensemble theory?, Annals of Physics, 270, 1-51 (1998), http://arxiv.org/abs/gr-qc/9704009</ref> ja niiden kaikkien elämän sallimien alueiden kattama tilavuus on joka tapauksessa tähtitieteellisen pieni verrattuna kuolleeseen parametriavaruuden alueeseen. Hienosäädön tarkastelu usean parametrin funktiona lisää hienosäätö-argumentin vahvuutta. ===Ulottuvuuksien määrä=== Käytössämme on 3 paikkaulottuvuutta (pituus, leveys ja korkeus) sekä yksi aikaulottuvuus. Elämä on mahdollista vain tässä 3+1 kombinaatiossa. Mikäli paikkaulottuvuuksia olisi vähemmän, verisuonet, hermot tai suolisto halkaisisivat eliön. Mikäli paikkaulottuvuuksia olisi enemmän, planeettojen radat eivät olisi vakaita. Mikäli taas aikaulottuvuuksia olisi enemmän, kausaalisuus kärsisi. (Säieteorioissa on toki enemmän valtavan pieniä 'kompakteja' ulottuvuuksia, mutta tässä olennaista on makroskooppisten ulottuvuuksien määrä.) ===Universumiin liittyviä parametreja=== [[Tiedosto:Alkurajahdys1.jpg|thumb|500px|right|Sisältääkseen elämälle suotuisia alueita, universumin laajenemisnopeuden ja alkuentropian tulee olla hienosäädetty.]] Universumin laajeneminen miljardeja vuosia massan jatkuvasti hidastaessa laajenemista vaatii valtavan tarkkaa tasapainoa. Toisaalta, ettei painovoima vedä universumia liian aikaisin kasaan, ja toisaalta, ettei laajeneminen ole niin nopeaa ettei rakenteita pääse muodostumaan<ref>{{Kirjaviite | Tekijä = [[John Lennox]] | Nimeke = God's Undertaker: Has Science Buried God? | Julkaisija = Lion Publishing plc | Vuosi = 2009 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0745953717 }}</ref>. Kosmisen inflaation mallit selittävät laajenemisnopeuden hienösäädön mutta mallien parametreja (inflaatiokentän tyyppi, inflaation alku- ja loppuhetki) ja rakennetta täytyy hienosäätää jotta tämä olisi mahdollista. Inflaatiomallit siis siirtävät hienosäädön omaan rakenteeseensa ja vakioihinsa. Toisaalta tässä tapauksessa hienosäätö ei enää ole niin suurta, ainakaan malliparametrien osalta. Universumin normaali aine on nykytietämyksen mukaan seurausta alkuräjähdyksen alkuhetkillä tapahtuneesta symmetriarikosta materian ja antimaterian välillä. Tavallista ainetta syntyi hieman enemmän. Ei ole mitään a priori syytä sille miksei symmetriarikko olisi voinut tapahtua myöhemmin tai aiemmin. Onneksi se tapahtui ajallaan, muuten emme olisi tässä<ref> {{Kirjaviite | Tekijä = Gerald L. Schroeder | Nimeke = The Science of God: The Convergence of Scientific and Biblical Wisdom | Julkaisija = Broadway Books | Vuosi = 1998 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0767903035}} </ref>. Universumin laajenemista kiihdyttävän 'voiman' arvo (kosmologinen vakio) on erittäin pieni. Onneksi tämä kosmologinen vakio noin 1/10<sup>120</sup> -osa siitä mitä sen odottaisi olevan (odottaisi mikäli hiukkasten massat olisivat sattuman tulosta), muuten galakseja ja tähtiä ei olisi. Tämä 'voima' laajentaisi avaruuden niin nopeasti, ettei mitään rakenteiden muodostumista ehtisi tapahtua. Kosmologinen vakio vaatii vähintään 1/10<sup>53</sup> (mikäli hienosäätöä tarkastellaan massa-, ei energia-akselilla) hienosäädön jotta elämä olisi mahdollista<ref name="ross">{{Kirjaviite | Tekijä = Hugh Ross | Nimeke = The Creator and the Cosmos: How the Latest Scientific Discoveries of the Century Reveal God | Julkaisija = NavPress Publishing Group | Vuosi = 2001 (3rd edition) | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-1576832882}} </ref>. Tämä hienösäätö on tarkempaa kuin se, että kuussa oleva tikanheittäjä osuu maapallon pinnan tiettyyn atomiin tikallaan. Massa on universumissa juuri sopivan tasaisesti: 1/100000 eroja. Jos massa olisi liian tasaisesti jakautunutta, painovoima ei alkaisi kasata tähtiä. Jos se olisi liian epätasaisesti jakautunutta, olisi vain mustia aukkoja. Universumin entropia täytyy asettaa erittäin epätavalliseen arvoon jotta elämän salliva universumi olisi mahdollista. Entropia kuvaa systeemin tilan todennäköisyyttä. Mustan aukon erittäin suuri entropia voidaan laskea. Suuresta entropiasta seuraa, että mustista aukoista koostuva alkutila on universumille paljon todennäköisempi kuin nykyiseen elämälle sopivaan universumiimme johtanut erittäin järjestäytynyt alkutila. On laskettu<ref>{{Kirjaviite | Tekijä = Roger Penrose | Nimeke = The Road to Reality: A Complete Guide to the Laws of the Universe | Julkaisija = Random House Group Ltd | Vuosi = 2004 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0679776314}}</ref>, että universumin alkutila vaatii hienosäätöä <math>1/10^{10^{123}}</math> tarkkuudella. Tämä todennäköisyys on niin pieni, että lukua ei voida edes kirjoittaa auki tunnetun universumin atomeilla.
Yhteenveto:
Muutoksesi astuvat voimaan välittömästi.
Kaikki ApoWikiin tehtävät tuotokset katsotaan julkaistuksi GNU Free Documentation License 1.3 or later -lisenssin mukaisesti (
ApoWiki:Tekijänoikeudet
). Jos et halua, että kirjoitustasi muokataan armottomasti ja uudelleenkäytetään vapaasti, älä tallenna kirjoitustasi. Tallentamalla muutoksesi lupaat, että kirjoitit tekstisi itse, tai kopioit sen jostain vapaasta lähteestä.
ÄLÄ KÄYTÄ TEKIJÄNOIKEUDEN ALAISTA MATERIAALIA ILMAN LUPAA!
Peruuta
Muokkausohjeet
(avautuu uuteen ikkunaan)
Valikko
Valikko
Etusivu
Kahvihuone
Ilmoitustaulu
Lukusuositukset
Tuoreet muutokset
Luokkahakemisto
Satunnainen sivu
Kiitokset
Linkit
Ohje
Wiki-työkalut
Wiki-työkalut
Toimintosivut
Sivutyökalut
Sivutyökalut
Käyttäjäsivun työkalut
Lisää
Tänne viittaavat sivut
Linkitettyjen sivujen muutokset
Sivun tiedot
Sivun lokit