Anonyymi
Et ole kirjautunut
Keskustelu
Muokkaukset
Luo tunnus
Kirjaudu sisään
ApoWiki
Haku
Muokataan osiota sivusta
Kosminen hienosäätö
ApoWikistä
Nimiavaruudet
Sivu
Keskustelu
Lisää
Lisää
Sivun toiminnot
Lue
Muokkaa
Historia
Varoitus:
Et ole kirjautunut sisään. IP-osoitteesi näkyy julkisesti kaikille, jos muokkaat. Jos
kirjaudut sisään
tai
luot tunnuksen
, muokkauksesi yhdistetään käyttäjänimeesi ja saat paremman käyttökokemuksen.
Mainosroskan tarkastus.
Älä
täytä tätä!
==Alkuaineet ja yhdisteet== ===Liuotin=== Minkä tahansa realistisesti kuviteltavissa olevan elämän tulee koostua vähintäänkin kahdesta tai useammasta aineen olomuodosta ([[wp:faasi|faasista]]). On esimerkiksi vaikeaa kuvitella miten eliö voisi koostua pelkästään kaasusta (tai nesteestä). Ko. faaseissa molekyylit ovat liian löyhästi toisiinsa sidottuja ja sekoittuvat jatkuvasti, jolloin ne eivät kykene ylläpitämään rakennetta. Vaaditaan siis jokin kiinteän olonmuodon aine, joka ylläpitää eliön muotoa ja rakennetta. On lisäksi realistista odottaa eliön tarvitsevan aineenvaihduntaa, mikä, ollakseen riittävän nopeaa, taas tarvitsee neste- tai kaasufaasin. Kiinteäpohjainen elämä tarvitsee siis liuottimen. Tarkastelemme seuraavaksi miksi veden kemialliset ja fysikaaliset ominaisuudet tekevät siitä erinomaisen liuottimen hiilipohjaisille elämänmuodoille. ====Vesi==== Elämä tarvitsee nesteen. Neste mahdollistaa sen, että elämän rakennusosat voivat liikkua, mutta myös koskea toisiinsa riittävän usein. Alla joitain veden elämän mahdollistavista ominaisuuksista. Nämä ja useat veden muut ominaisuudet tekevät vedestä erittäin poikkeuksellisen nesteen. *Vesi on universaali liuotin: useimmat aineet liukenevat veteen. Kun elämä käyttää vettä, se voi käyttää useimpia alkuaineita. *Vesi ei ole liian reaktiivinen, useimmat aineet eivät pala tai syövy veden vaikutuksesta liian nopeasti. *Vedellä on sopivan pieni viskositeetti (nesteen jähmeys) esimerkiksi verenkiertoon. Veden kapillaari-ilmiö mahdollistaa sen että vesi nousee painovoimaa vastaan kapeissa putkissa mahdollistaen suurten kasvien elämän. *Vedellä on yksinkertainen rakenne joten vettä on saatavilla =====Vesi - pysyminen nesteenä===== Elämälle on siis välttämätöntä että vesi pysyy nestemäisenä. Veden omat ominaisuudet auttavat tässä. Jos siis veden ominaisuudet olisivat toisenlaiset, emme olisi täällä.<ref name="denton">{{Kirjaviite | Tekijä = Michael Denton | Nimeke = Natures Destiny: How the Laws of Biology Reveal Purpose in the Universe | Julkaisija = Free Press | Vuosi = 1998 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0684845098}} </ref>{{,}}<ref>{{Kirjaviite | Tekijä = Lawrence J. Henderson | Nimeke = Fitness of the Environment: An Inquiry into the Biological Significance of the Properties of Matter | Julkaisija = Peter Smith Pub Inc | Vuosi = 1981 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0844606910}}</ref>: *Korkea lämpökapasiteetti. Vedellä on aineiden joukossa poikkeuksellisen korkea lämpökapasiteetti, joka tarkoittaa sitä että vesi kykenee sitomaan paljon lämpöenergiaa ilman että sen oma lämpötila muuttuu merkittävästi. *Korkea kiehumispiste. Vedellä on poikkeuksellisen korkea kiehumispiste, se höyrystyy vasta sadassa asteessa. *Vesi laajenee jäätyessään. Tämä on erittäin poikkeuksellista nesteiden joukossa ja mahdollistaa sen, että jää nestemäistä vettä kevyempänä kelluu. Mikäli jää muodostuisi merien ja järvien pohjaan, jokainen talvi lisäisi jään määrää pohjassa, eikä jää ehtisi sulaa kesän aikana. Tällöin järvet jäätyisivät pohjasta myöden, tappaen suurimman osan vesien elämästä. Jää muodostaa järviä ja meriä liialta jäätymiseltä suojaavan kerroksen koska jäällä on alhainen lämmönjohtavuus ja siinä ei tapahdu konvektiota. Näin suurin osa vedestä ei jäädy. *Korkea jäätymisen latenttilämpö. Jäätyessään vesi luovuttaa paljon lämpöenergiaa ympäristöönsä näin hidastaen jäätymistä jääkerroksen alarajassa. *Jään ja lumen alhainen lämmönjohtavuus. Jää muodostaa kylmältä suojaavan kerroksen järvien pinnalle. Näin jäätyminen hidastuu. *Jään sopivan pieni viskositeetti. Jää on suuremmassa paineessa muovautuvaa, joten jää ei jää maapallon navoille tai vuoristoihin vaan suuret jäämassat leviävät hajoavat reunoilta ja näin kaikki vesi ei jäädy navoille ja vuorien huipuille. =====Vesi - lämmönsäätely===== Veden ominaisuudet ovat juuri sopivat ihmisen, eläimien ja maapallon lämmönsäätelyyn (Lämmönsäätely ja sille edulliset ominaisuudet ovat osin päällekkäisiä yo. veden nesteenä pysymisen kanssa mutta kyse on eri tavoitteesta.): *Korkea lämpökapasiteetti. Vesi kykenee sitomaan paljon lämpöenergiaa ilman että sen oma lämpötila muuttuu merkittävästi. Kun ihminen tai eliö siis tekee lihaksillaan tai aineenvaihdunnallaan työtä, josta aina vapautuu lämpöenergiaa, vettä käyttävän eliön oma lämpötila ei muutu merkittävästi. Esimerkiksi (vettä käyttävän) ihmisen lämpötila nousee 10 km juoksun seurauksen 10 astetta (tämäkin olisi tappavaa, mutta keho käyttää veden <!-- Mihin? -->. Mikäli olisimme suolaa, ruumiinlämpömme nousisi 40 astetta, mikäli lyijyä, 200 astetta. Samoin koko maapallon lämpötilavaihtelut ovat huomattavan pieniä koska suuret vesimassat tasaavat vuorokausi- ja vuodenaikojen lämpötilavaihteluja. *Korkea kiehumispiste. Vesi ei kiehu eikä haihdu liian helpolla. *Veden alhainen viskositeetti. Veden juoksevuus mahdollistaa verenkierron. Vesi on jopa ei-Newtonilainen neste, joka tarkoittaa, että kun painetta lisätään, veden viskositeetti laskee (eli juoksevuus kasvaa). *Korkea ominaislämpö. Vesi pystyy viemään suuria määriä lämpöenergiaa pois kudoksesta. Vesi kykenee siirtämään paljon lämpöenergiaa ja tasaamaan maapallon lämpötilaeroja (merivirrat jne.). *Lämmönjohtavuus. Veden nesteiden joukossa poikkeuksellisen korkean (nelinkertainen yleisiin nesteisiin verrattuna) lämmönjohtavuuden avulla lämpö siirtyy hiussuonista ympäröivään kudokseen ja päinvastoin. Näin lämpö saadaan kuljetettua iholle. *Korkea latenttilämpö haihtumisessa. Haihtuessaan vesi kuluttaa paljon lämpöenergiaa. Tämä mahdollistaa tehokkaan jäähdytyksen hikoilemalla. =====Vesi - ravinteet===== Veden ominaisuudet ovat myös juuri sopivat ravinteiden kiertoon, joka myös on välttämätöntä elämän kannalta. Vesi laajenee jäätyessään, hajottaen kiviä. Vesi liuottaa ravinteita ja kuljettaa niitä käyttöön. Sen viskositeetti on sopiva jokiin. Veden pintajännitys mahdollistaa kapillaari-ilmiön jolla kasvit kuljettavat ravinteita ja vettä juurista ylöspäin painovoimaa vastaan. Lisäksi useat proteiinien osat ovat vettähylkiviä, eli hydrofobisia, joka mahdollistaa mm. proteiinien sopivan laskostuksen. ===Hiili=== Hiilen ominaisuudet tekevät siitä juuri sopivan elämän käyttöön<ref name="denton" />: *Hiili kykenee muodostamaan erittäin pitkiä ketjuja. Esimerkiksi usein esitetyn hiilen korvikkeen, piin, pitkät ketjut eivät ole riittävän vakaita. *Hiilen affiinisuus hyvin erilaisille alkuaineille ei vaihtele liian paljoa. Tämä on erityisesti tärkeää vedyn, hapen ja typen tapauksissa. Näin hiilen ja näiden aineiden yhdisteiden energiasisältö ei vaihtele paljon. Ne ovat vakaita ja hyvin erilaiset reaktiot ovat käytettävissä. Hiilen reaktiot ovat siis yleensä lieviä ja yhdisteet metastabiileja. *Hiili kykenee muodostamaan monenlaisia sidoksia (vahva kovalentti sidos, heikommat ei-kovalentit sidokset (esim proteiinin 3D muoto)). Esimerkiksi piin kohdalla näin ei ole ja siten piin kemia on paljon köyhempää ja siitä puuttuu monimuotoisuus. *Hiilen sidokset ovat käyttökelpoisia juuri samalla lämpötila-alueella kuin vesi on nestemäisenä. Vastaavia 'onnellisia yhteensattumia' nousee esiin useista muistakin alkuaineista joita elämä voi onnekseen käyttää <ref name="denton" />. ===DNA-molekyyli=== [[Kuva:GeneticCode21.png|thumb|right|240px|Geneettinen koodin degeneraatio minimoi mutaatioiden haitalliset vaikutukset.]] DNA on sopivin molekyyli eliöiden rakennuspiirustusten kantamiseen<ref name="denton" />: *Kemiallisesti sopivan pysyvä vedessä *Sen rakenne mahdollistaa tarkan ja nopean kopioinnin *Se on joustava joka mahdollistaa sen, että proteiini tunnistaa oikean kohdan DNA:ssa ja voi lukea tarvittavat ohjeet. *Sillä on erittäin suuri pakkautuvuus superkiertymisen ansiosta (metrin pätkä kiertyy 0.005 mm palloksi). *Paras koodaussysteemi: **Koodaustapa (64 eri kodonilla 20 aminohappoa) on optimaalinen<ref>{{Kirjaviite | Tekijä = Hubert P. Yockey | Nimeke = Information theory and molecular biology | Julkaisija = Cambridge university press | Vuosi = 1992 | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0521350051 }} </ref>. Geneettisen koodin degeneraatio (64 eri kodonia koodaa 20 aminohappoa) minimoi mutaatioiden haitalliset vaikutukset. Mikäli vain 20 kodonia koodaisi aminohappoja ja loput 44 johtaisivat proteiinisynteesin keskeytymiseen todennäköisyys mutaatioiden aiheuttamalle ketjunmuodostumisen keskeytymiselle kasvaisi. Koodi on lisäksi rakennettu siten että muutokset jossakin kodonin kolmesta nukleotidissä johtavat synonyymin (koodattava aminohappo ei muutu) taikka aminohappoon jolla on samanlaiset kemialliset ominaisuudet. Geneettisen koodin degeneraatio minimoi siksi mutaatioiden haitalliset vaikutukset. <ref name="isbn0-7167-6766-X">{{cite book |author=Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. |title=Biochemistry |publisher=W.H. Freeman |location=San Francisco |year=2007 |page = 125 |isbn=0-7167-6766-X | quote = What is the biological significance of the extensive degeneracy of the genetic code? If the code were not degenerate, 20 codons would designate amino acids and 44 would lead to chain termination. The probability of mutating to chain termination would therefore be much higher with a nondegenerate code. Chain-termination mutations usually lead to inactive proteins, whereas substitutions of one amino acid for another are usually rather harmless. ''Thus, degeneracy minimizes the deleterious effects of mutations''|oclc= |doi= |accessdate=2010-04-24}}</ref> **Mahdollisia koodeja on 10<sup>70</sup> kappaletta. Tämän avaruuden etsintä on täysin mahdotonta. **Koodin muuttuminen evoluution aikana olennaisesti edes kerran on erittäin epätodennäköistä valtavien korrelaatioiden takia. (Koodin vaihtaminen vaikuttaisi heti koko perimän lukuun, virheitä tulisi valtavasti.) **Nykyinen koodi on virheensiedoltaan parempi kuin miljoona satunnaista koodaussysteemiä, todennäköisesti parhain 10<sup>18</sup> koodin joukossa<ref> {{Kirjaviite | Tekijä = Fazale Rana | Nimeke = The Cell's Design: How Chemistry Reveals the Creator's Artistry | Julkaisija = | Vuosi = | Kappale = | Sivu = | Selite = | Tunniste = ISBN 978-0801068270}}</ref>. **Paras koodaussysteemi myös päällekkäisten ohjelmien kannalta. **Koska on erittäin epätodennäköistä että koodi voisi kehittyä ja se on silti optimaalinen, tämä on vahva viite suunnittelusta. Riittävän älykäs suunnittelija kykenee päätymään optimiratkaisuun ilman kokeiluja. Kaikkien muiden tunnettujen koodien takana on ollut suunnittelija. ===Valo ja elämä=== Näkyvä valo kattaa vain pienen osan sähkömagneettisesta spektristä. Kuitenkin juuri tuo alue, jota aurinkomme tuottaa yltäkyllin, on energialtaan juuri sellaista jota mikään mahdollinen elämä voi hyödyntää<ref name="denton" />. Elämä ei olisi voinut kehittyä käyttämään radio-, gamma- tai röntgensäteilyä. Tähtitieteilijä ja evolutionisti George Greenstein täsmentää miksi elämä voi ylipäätään hyödyntään vain näkyvää valoa: {{Quotation|Saattaisi luulla, että kyseessä on adaptaatio: että kasvit ovat mukautuneet hyödyntämään auringonvaloa. Loppujen lopuksihan jos auringollamme olisi poikkeava lämpötila, niin eikö jokin toinen molekyyli voisi korvata klorofyllin ja absorboida eri väristä valoa? Hätkähdyttävästi vastaus on ei, sillä kaikki molekyylit absorboivat saman väriskaalan valoa. Valon absorboituminen johtuu elektronien virittymisestä korkeammille energiatiloille molekyyleissä. Energiaskaala missä tämä tapahtuu on sama huolimatta mistä molekyylistä on kyse. Lisäksi valo koostuu fotoneista, energia paketeista, ja väärä energisiä fotoneja ei yksinkertaisesti voida absorboida.|George Greenstein|The symbiotic universe (1988) <ref name="isbn0-688-07604-1">{{cite book |author=Greenstein, George |title=The symbiotic universe: life and mind in the cosmos |publisher=Morrow |location=New York |year=1988 |pages= |isbn=0-688-07604-1 |quote = ''One might think that a certain adaptation has been at work here: the adaptation of plant life to the properties of sunlight. After all, if the Sun were a different temperature could not some other molecule, tuned to absorb light of a different color, take the place of chlorophyll? Remarkably enough the answer is no, for within broad limits all molecules absorb light of similar colors. The abosorption of light is accomplished by the excitation of electrons in molecules to higher energy states, and the general scale of energy required to do this the same no matter what molecule you are discussing. Furthermore, light is composed of photons, packets of energy, and photons of the wrong energy simply cannot be absorbed.'' |doi= |accessdate= 2010-04-25}}</ref>}} Elämä vaatii lisäksi sellaisen ilmakehän jonka näkyvä valo läpäisee. Oma ilmakehämme suodattaa suurimman osan sähkömagneettisesta spektristä - mm. elämälle vaaralliset alueet kuten gamma-, röntgen ja UV-säteilyn, mutta päästään lävitseen kuitenkin kapean kaistaleen spektristä - elämälle välttämättömän näkyvän valon alueen. *Myös vesi absorboi meille vaarallista säteilyä ja läpäisee hyödyllistä säteilyä. Tämä mahdollistaa esimerkiksi näköaistien käytön vedessä sekä auringonvalon merkityksen sekä pinta- että pohjakasvustolle. *Myös eliöiden silmien on mahdollista olla tarkkoja juuri tällä samalla valon aallonpituus-alueella. Suuremmat aallonpituudet vaatisivat liian suuria silmiä ja kuvausvirheitä olisi vaikea hallita. Pienempiä aallonpituuksia on vaikeaa taittaa ja ne vaurioittavat silmiä.
Yhteenveto:
Muutoksesi astuvat voimaan välittömästi.
Kaikki ApoWikiin tehtävät tuotokset katsotaan julkaistuksi GNU Free Documentation License 1.3 or later -lisenssin mukaisesti (
ApoWiki:Tekijänoikeudet
). Jos et halua, että kirjoitustasi muokataan armottomasti ja uudelleenkäytetään vapaasti, älä tallenna kirjoitustasi. Tallentamalla muutoksesi lupaat, että kirjoitit tekstisi itse, tai kopioit sen jostain vapaasta lähteestä.
ÄLÄ KÄYTÄ TEKIJÄNOIKEUDEN ALAISTA MATERIAALIA ILMAN LUPAA!
Peruuta
Muokkausohjeet
(avautuu uuteen ikkunaan)
Valikko
Valikko
Etusivu
Kahvihuone
Ilmoitustaulu
Lukusuositukset
Tuoreet muutokset
Luokkahakemisto
Satunnainen sivu
Kiitokset
Linkit
Ohje
Wiki-työkalut
Wiki-työkalut
Toimintosivut
Sivutyökalut
Sivutyökalut
Käyttäjäsivun työkalut
Lisää
Tänne viittaavat sivut
Linkitettyjen sivujen muutokset
Sivun tiedot
Sivun lokit