Ero sivun ”Bayesin teoreema” versioiden välillä
(Ak: Uusi sivu: '''Bayesin teoreema''' (myös '''Bayesin sääntö''' tai '''Bayesin laki''') on ehdolliseen todennäköisyyteen liittyvä teoreema. Teoreeman void...) |
Ei muokkausyhteenvetoa |
||
Rivi 77: | Rivi 77: | ||
[[Category:Todennäköisyyslaskenta]] | [[Category:Todennäköisyyslaskenta]] | ||
[[Category:Matemaattiset teoreemat]] | [[Category:Matemaattiset teoreemat]] | ||
Versio 14. tammikuuta 2009 kello 20.41
Bayesin teoreema (myös Bayesin sääntö tai Bayesin laki) on ehdolliseen todennäköisyyteen liittyvä teoreema. Teoreeman voidaan tulkita kuvaavan uskomusten päivittämistä uuden todisteaineiston valossa a posteriori. Teoreema on nimetty sen kehittäneen 1700-luvulla eläneen brittiläisen pastori ja matemaatikko Thomas Bayesin mukaan. Bayes kehitti teoreeman 1700 luvulla. Myöhemmin Fisheriläinen tilastoteoria ja näennäisen objektiivinen frekventistinen todennäköisyyskäsitys saivat vallalla olevan paradigman aseman. Bayeslaisen analyysin kannattajat eivät juuri saaneet julkaisujaan läpi alan lehdissä ja vasta noin 1980-luvulla Bayesin teoreema on tullut uudelleen hyväksytyksi laajemmin tieteen piiriin ja sen sovellus on johtanut useisiin selvästi parempiin menetelmiin. Teoreema on siis hyvä osoitus tieteellisten paradigmojen voimasta ja tieteen itseäänkorjaavuuden rajoista, vaikka kyse on maailmankatsomuksellisesti paljon neutraalimmasta asiasta kuin esimerkiksi materialismin tai evolutionismin valtaparadigman asema nykyään.
Teoreeman esittely
Tapahtuman A todennäköisyys ehdolla B on yleisesti eri asia kuin B ehdolla A. Näiden kahden ehdollisen todennäköisyyden välillä on kuitenkin suhde, jota Bayesin teoreema kuvaa. Teoreema kuuluu seuraavasti:
- on A:n priori-todennäköisyys. Se ei riipu B:stä (jota joskus kutsutaan havainnoksi).
- on A:n todennäköisyys ehdolla B. Tätä kutsutaan myös posterioritodennäköisyydeksi.
- on B:n todennäköisyys ehdolla A.
- on B:n priori-todennäköisyys.
Esimerkki teoreeman käytöstä
Oletetaan, että meillä on kaksi purkillista keksejä. Purkissa 1 on 10 suklaakeksiä sekä 30 kookoskeksiä, kun taas purkissa 2 on molempia laatuja 20 kappaletta. Oletetaan, että Fred valitsee ensin sattumanvaraisesti toisen purkeista ja sitten nostaa valitsemastaan purkista sattumanvaraisesti yhden keksin. Fredin valitsema keksi on kookoskeksi. Millä todennäköisyydellä se on peräisin purkista 1?
Intuitiivisesti on helppo nähdä, että koska kookoskeksejä on purkissa 1 enemmän kuin 2, on todennäköisyyden oltava suurempi kuin 0.5. Tarkka todennäköisyys voidaan laskea Bayesin teoreeman avulla.
- on todennäköisyys sille, että Fredin valitsema purkki on purkki 1 siinä tapauksessa, että hän on valinnut purkista kookoskeksin. Tähän etsimme tässä ongelmassa ratkaisua.
- on todennäköisyys sille, että Fredin valitsema keksi on kookoskeksi. Tätä todennäköisyyttä kuvaa kookoskeksien osuus kaikista mahdollisista kekseistä. Kookoskeksejä on ensimmäisessä purkissa 30 kappaletta ja toisessa purkissa 20 kappaletta, yhteensä 50 kappaletta. Koska molemmissa purkeissa on 40 keksiä, on keksien kokonaismäärä 80 kappaletta. Näin saadaan
- on todennäköisyys sille, että Fredin valitsema purkki on nimenomaan purkki 1. Kahdesta purkista yhden tietyn valitsemisen todennäköisyys on 0.5.
- on todennäköisyys sille, että Fredin valitsema keksi on kookoskeksi siinä tapauksessa, että hän on valinnut purkin 1. Koska purkissa 1 on yhteensä 40 keksiä, joista 30 on kookoskeksejä, saadaan todennäköisyydeksi
Tämän informaation avulla voimme laskea todennäköisyyden sille, että Fredin valitsema kookoskeksi on peräisin purkista 1:
Bayesin teoreeman asema
Bayeslainen tilastoteoria, joka siis perustuu yo. teoreeman käyttöön, on yksi tilastotieteen matematiikan suuntauksesta. Muita tapoja ovat Fisheriläinen ja Pearsonilainen lähestymistapa.
Bayeslaisen tavan vahvuus on sen suora johto todennäköisyyslaskennan perusidentiteeteistä (ks. alla). Voidaan sanoa, että teoreema on hyvin varmasti oikein. Kysymys koskee lähinnä sitä, pitäisikö teoreemaa käyttää koska priori-todennäköisyyttä ei välttämättä tiedetä. Näin keskustelu palautuu todennäköisyyden käsitteeseen:
- Bayeslaiset ovat tyypillisesti episteemisen todennäköisyyskäsityksen kannattajia, jossa todennäköisyys kuvaa henkilön uskomuksen ja siten tiedon astetta.
- Frekventistisessä todennäköisyyskäsityksessä todennäköisyyksien ajatellaan kuvaavan toistokokeiden suhteellisia määriä. Ongelmaksi muodostuu, että yleensä meillä ei ole tarpeeksi toistokokeita.
Episteeminen todennäköisyys voidaan usein arvioida välttävällä tavalla, joten priori-ongelma ei usein ole merkittävä. Priorin valintaan ei kuitenkaan ole yhtä oikeaa tapaa. Tarkoitus olisi, että priori kuvaa henkilön tietämyksen tilaa, mutta tietämyksen esittäminen matemaattisesti ei ole ongelmatonta. Matemaattiset menetelmät esittää tämä tietämys ovat usein merkittävästi riippuvaisia tehdyistä valinnoista eivätkä yleensä ole parametrisoinnista riippumattomia. Riittävän oikealla priorilla saadaan kuitenkin yleensä riittävän oikeita tuloksia ja yleensä havaintojen kasvaessa priorin merkitys vähenee nopeasti. Järkevien priorivalintojen vaikutusta lopputulokseen voidaan myös arvioida.
Ehkä merkittävin puute Bayeslaisessa hypoteesitestauksessa on se, että sillä voidaan vain vertailla olemassaolevia hypoteeseja keskenään. Yhtä teoriaa ei voida arvioita. Käytännössä jopa Bayeslaisen hypoteesitestauksen tiukimmat puolestapuhujat kuten Jaynes vetoavat Fisherin hypoteesitestauksen kaltaisiin kriteereihin kun tilanteissa joissa on tarve miettiä pitäisikö etsiä jotain parempaa teoriaa.
Ongelmistaan huolimatta Bayeslainen tapa tarjoaa hyvin perustellun, systemaattisen ja todennäköisyyksiin perustuvan tavan arvioida argumentteja. Siihen on sisäänrakennettuna useimmat olennaiset tieteenfilosofiset teorianvalinnan kriteerit. Bayesin teoreema voidaan laajentaa väittämien välisten uskomusverkkojen systemaattiseen analyysiin (Bayes nets), joka sopii hyvin maailmankatsomusten analyysiin.
Huomattavimpia Bayesian teoreemaa käyttäviä kristittyjä filosofeja on Richard Swinburne. Teoksessaan The Existence of God Swinburne käy läpi mm. pahan ongelman, uskonnolliset kokemukset ja Jeesuksen ylösnousemuksen todisteet ja päätyy siihen että käsitellyn evidenssin pohjalta teismi on vähintään 95% todennäköisyydellä totta.
Myös suunnitteluteoria on esitettävissä Bayeslaisessa muodossa.
Teoreeman johtaminen ehdollisesta todennäköisyydestä
Ehdollisen todennäköisyyden määritelmän mukaisesti tapahtuman A todennäköisyys ehdolla B on
Vastaavasti tapahtuman B todennäköisyys ehdolla A on
Näistä kahdesta yhtälöstä saadaan
Jakamalla näin saadun yhtälön molemmat puolet tekijällä P(B) saadaan Bayesin teoreema
Kirjallisuutta
- E.T. Jaynes, Probability Theory, The Logic of Science. (Jaynes väittää todistavansa enemmän kuin todistaa ja Jaynes oli puusilmäinen ateisti, joka mm. väitti että Nasaretin olemassaolo on epätodennäköistä kun siitä ei ole todisteita, mutta Jaynesin Bayeslaisen hypoteesitestauksen periaatteiden ja frekventististen menetelmien ongelmien käsittely on selkeää ja hyvää luettavaa.)
- R. Swinburne, The Existence of God, 2. painos, 2004, Clarendon Press.