Anonyymi
Et ole kirjautunut
Keskustelu
Muokkaukset
Luo tunnus
Kirjaudu sisään
ApoWiki
Haku
Muokataan osiota sivusta
Bayesin teoreema
ApoWikistä
Nimiavaruudet
Sivu
Keskustelu
Lisää
Lisää
Sivun toiminnot
Lue
Muokkaa
Historia
Varoitus:
Et ole kirjautunut sisään. IP-osoitteesi näkyy julkisesti kaikille, jos muokkaat. Jos
kirjaudut sisään
tai
luot tunnuksen
, muokkauksesi yhdistetään käyttäjänimeesi ja saat paremman käyttökokemuksen.
Mainosroskan tarkastus.
Älä
täytä tätä!
===Toinen esimerkki teoreeman käytöstä=== Otetaan tarkastelun lähtökohdaksi taaskin Pertin kaksi keksipurkillista: ykköspurkissa on tällä kertaa 10 suklaakeksin lisäksi 30 kookoskeksiä, kakkospurkissa taas molempia laatuja 20 kappaletta. Esimerkkitapahtumat etenevät niin, että Pertti kopeloi taaskin sattumanvaraisesti käteensä toisen purkeista, nostaa siitä yhden keksin niin umpimähkäisesti, ettei jälkeenpäin enää itsekään tiedä, kummasta purkista se oli peräisin, mutta havaitsee saaneensa taaskin kookoskeksin. Millä todennäköisyydellä se nyt on peräisin ykköspurkista? Varmasti se on peräisin siitä purkista, jossa on nyt jäljellä vain 39 keksiä, mutta Pertti ei nytkään käy laskemaan keksimääriä vaan arvioi tilannetta vain edelläannetun informaation perusteella. Intuitiivisesti on helppo nähdä, että koska kookoskeksejä on ykköspurkissa suhteellisesti(kin) enemmän kuin kakkospurkissa, ykköspurkki on tässä tapauksessa kakkospurkkia todennäköisempi.<ref>Tämä on sitä helpompi huomata, mitä enemmän purkkien sisällöt alun perin poikkesivat: esim. 39 kookos + 1 suklaa -purkki olisi selvästi todennäköisempi kuin 1 kookos + 39 suklaa -purkki.</ref> Bayesin teoreema täsmentää tämän summittaisen arvion antamalla tapahtuman tarkan todennäköisyyden: :<math>P(ekapurkki|kookoskeksi)\,</math> on todennäköisyys sille, että Pertti oli tarttunut ykköspurkkiin siinä tapauksessa, että hän on poiminut purkistaan kookoskeksin. Juuri tämän todennäköisyyden haluamme siis selvittää: :::<math>P(ekapurkki|kookoskeksi)\,= ?</math> :<math>P(kookoskeksi)\,</math> on lähtötilanteessa vallinnut todennäköisyys, että lopulta Pertti saa sattumalta käteensä kookoskeksin. Koska jokaisella keksillä on alun perin yhtä suuri todennäköisyys päätyä lopuksi Pertin käteen, kookoskeksin saamistodennäköisyys vastaa kookoskeksien suhteellista osuutta kaikista purkeissa olevista kekseistä. Kookoskeksejä on ykköspurkissa 30 ja kakkospurkissa 20, yhteensä siis 50. Koska kummassakin purkissa on alun perin 40 keksiä, keksejä on kaikkiaan 80. Näin saadaan :::<math>P(kookoskeksi) = \frac{50}{80}=0,625</math> :<math>P(ekapurkki)\,</math> on todennäköisyys, että Pertti tarttuu sattumanvaraisesti nimenomaan ykköspurkkiin. Kahdesta purkkivaihtoehdosta kumpikin on alun perin yhtä todennäköinen, joten tämä todennäköisyys on 0,5. ::: <math>P(ekapurkki)=\frac{1}{2}=0,5</math> :<math>P(kookoskeksi|ekapurkki)\,</math> on todennäköisyys, että Pertti ykköspurkkiin tartuttuaan poimii siitä juuri kookoskeksin. Koska ykköspurkin kaikkiaan 40 keksistä tasan 30 on kookoskeksejä, saadaan todennäköisyydeksi :::<math>P(kookoskeksi|ekapurkki)=\frac{30}{40}=0,75</math> Kaiken tämän informaation avulla voimme nyt laskea todennäköisyyden sille, että Pertin valitsema kookoskeksi on peräisin juuri ykköspurkista: :<math>P(ekapurkki|kookoskeksi) = \frac{P(kookoskeksi|ekapurkki) P(ekapurkki)}{P(kookoskeksi)} = \frac{0,75 \cdot 0,5}{0,625} = 0,6</math> Kysymys on siis siitä, että ykköspurkki on sitä todennäköisempi, mitä suurempi siinä on kookoskeksien osuus ja mitä todennäköisemmin se tuli sattumanvaraisesti valituksi, ja sitä epätodennäköisempi, mitä todennäköisemmin kookoskeksi saatiin "purkista riippumatta". Näiden seikkojen järkevyyden voi mielessään todeta vaikkapa seuraavilla ajatuskokeilla: # Jos ykköspurkin kookoskeksipitoisuutta olisi alun perin lisätty, kookoskeksiin päätyminen olisi entisestään lisännyt ykköspurkin jälkikäteistodennäköisyyttä kakkospurkkiin verrattuna. # Jos taas ykköspurkkiin olisikin lisätty suklaakeksejä, sen jälkikäteistodennäköisyys olisi nykyistä pienempi. # Jos tarjolla olisi ollut kolmaskin purkki, ykköspurkin jälkikäteistodennäköisyys olisi nykyistä pienempi. # Jos tarjolla olisi ollut vain ykköspurkki, sen "valinta" olisi nykyistä todennäköisempää (vrt. yksipuoluevaalit). # Jos kakkospurkissa olisi ollut suhteessa nykyistä enemmän kookoskeksejä, ykköspurkkivaihtoehdon jälkikäteistodennäköisyys olisi nykyistä pienempi (koska kakkospurkin todennäköisyys olisi nykyistä suurempi); tässä tapauksessa myös kookoskeksin saamisen kokonaistodennäköisyys olisi kasvanut. # Jos kakkospurkissa olisi ollut suhteessa nykyistä enemmän muita kuin kookoskekseja, ykköspurkkivaihtoehdon jälkikäteistodennäköisyys olisi nykyistä suurempi (koska kakkospurkin todennäköisyys olisi nykyistä pienempi); tällöin myös kookoskeksin saamisen kokonaistodennäköisyys olisi pienentynyt.
Yhteenveto:
Kaikki ApoWikiin tehtävät tuotokset katsotaan julkaistuksi GNU Free Documentation License 1.3 or later -lisenssin mukaisesti (katso lisätietoja sivulta
ApoWiki:Tekijänoikeudet
). Jos et halua, että tekstiäsi voidaan muokata ja uudelleenkäytetään vapaasti, älä tallenna sitä.
Lupaat myös, että kirjoitit tekstisi itse, tai kopioit sen jostain vapaasta lähteestä.
Älä käytä tekijänoikeuden alaisa materiaalia ilman lupaa!
Peruuta
Muokkausohjeet
(avautuu uuteen ikkunaan)
Valikko
Valikko
Etusivu
Kahvihuone
Ilmoitustaulu
Lukusuositukset
Tuoreet muutokset
Luokkahakemisto
Satunnainen sivu
Kiitokset
Linkit
Ohje
Wiki-työkalut
Wiki-työkalut
Toimintosivut
Sivutyökalut
Sivutyökalut
Käyttäjäsivun työkalut
Lisää
Tänne viittaavat sivut
Linkitettyjen sivujen muutokset
Sivun tiedot
Sivun lokit